
E s s e n t i a l f o r s o f t w a r e t e s t e r s
TE TERSUBSCRIBE

It’s FREE
for testers

February 2012 v2.0 number 13£ 4 ¤ 5/

Including articles by:

development
testing

THIS ISSUE OF
PROFESSIONAL TESTER
IS SPONSORED BY

Chris Adlard
Coverity

Les Hatton
Kingston University and
Oakwood Computing
Associates

Harry M. Sneed and
Manfred Baumgartner
ANECON

Boguslaw Czwartkowski
Parasoft

Geoff Quentin

The full test suite is run and statement
coverage is measured. It's 90% and the
exit criteria for the phase calls for only
80%. Great!

But 95% of the tests are covering exactly
the same statements. 50% of the
statements covered are executed by only
a handful of very similar tests. Not great.

10% of statements are not executed by the
test suite, yet static analysis indicates that
there is no unreachable code. This is
because the statements can be reached,
but only if the last transaction on the
currently-logged-in account happened at
0000 hours UTC. Also not great.

Simple and more complex coverage
Programmers who practice test-driven
development correctly measure coverage
of their code continually. At component
level its meaning is clear, especially using
one of the many powerful coverage mea-
surement tools available. These integrate
closely with development environments
and show in visual reports how many
times each line of code has been covered
and, in some cases, which tests covered
a particular line. This is all the information
a developer needs to know whether (i) the
unit tests are working as expected and (ii)
the code needs to be refactored: if code is
written, as it should be, only to pass unit
tests the coverage should always be close
to 100% and if it falls below that when all
the unit tests needed are run something
is wrong.

To help assure the effectiveness of testing
at higher levels, more and different
coverage information is needed. But after
integration, when tests are run in a test
rather than a development environment,
getting it becomes much more complicated

because simple measurements may or
may not be meaningful and that is hard to
establish. Most coverage measurement
tools can highlight code that is “insuffi-
ciently covered” but what appears to be
“sufficiently covered” may only have been
covered repeatedly by too few tests.
Dynamic analysers that generate diagrams
visualizing control and data flow can also
help to find rarely-occurring paths. But
testers need a way to find out more: which
statements or decisions are covered as
the result of which test events and data.
Having that information would create a lot
of potential: not just to detect more defects
with existing tests, but to improve the tests
to provide more assurance and detect yet
more defects if they exist.

Getting it requires a way to link each
coverage event to the test that caused it.
It has been suggested, including by
Harry M. Sneed, a contributor to this issue,
that this can be done using time. Here is a
theoretical method:

Doing this could reveal which tests are
very similar and, more interestingly, which
are very different, to others in terms of the
code they cause to be executed. Introdu-
cing more variations of these tests, then
repeating steps 2 and 3 to show that more
code is executed by more different tests,
would increase the defect-finding potential
of the suite.

by Edward Bishop

The covers are off

Coverage is not a number

PT - February 2012 - professionaltester.com 12

PT editor
Edward Bishop
proposes a test design
improvement method
using Ranorex

Development testing

1.The probes inserted when the code
is instrumented are designed to record
not only that they have been executed,
but when, according to the system
clock

2.Each test script, or the tool executing
it, also records when it starts and
terminates and, in data-driven testing,
a means of identifying the data it uses
(eg the number of a line read from
a CSV file)

3.After execution, the two output files
are correlated and analysed.

A free trial of Ranorex is available from http://ranorex.com

automate them with a complex
configuration of the test execution tool.

I have noted in previous articles (see the
July 2010 and April 2011 issues of PT)
that the functional test automation tool
Ranorex provides exceptional flexibility
that promotes close collaboration between
development and testing. An example of
this is the key to a simple way to build the
coverage comparator tool this article des-
cribes. A test suite created in Ranorex is
a standard .NET project saved as a .EXE
file executable from the command line

A coverage comparator tool
It may be possible to get the time-based
method to work, but there are obvious
difficulties including the familiar problem
of time dependencies. There will be a dis-
crepancy between the two recorded times
and for many system architectures it will
vary significantly within and between runs.
Reliable correlation may be a significant
challenge. It seems likely but not certain
that technical solutions could be found.

A more direct method is easier: execute
tests or groups of tests individually and
discover the detailed coverage each
achieves separately. That removes the
need for the probes to do anything other
than identify themselves which is how
nearly all coverage measurement tools
work. One of these could be used, or a
new program written, to instrument the
code: figure 1 shows how it can be done
in and for VB.NET for simple line cover-
age. The number of probes needed could
be reduced and other coverage types
achieved by slightly more sophisticated
parsing. The analysis program is nearly
as easy to write: it reads all the coverage
data generated by the test runs, searches
for long blocks of text duplicated between
them, then sorts the lines in each of them
and compares the sorted lists. Figure 2
shows an example of some of the
output that can be generated.

The hardest part is running the individual
tests or groups of tests and organizing
their output. Starting them manually would
take a lot of effort, and between runs each
coverage file created would have to be
renamed or moved, then the information
about the name or location of the files
passed to the analysis program. It would
be better to collect all the coverage
information (the lines of text written by
the probes) in one large file, but the blocks
created by each run need to be separated.
That could be achieved by a tiny program
that appends the identity of the run to the
coverage file, but that would have to be
executed (and fed the run ID) between
runs. Conducting any of these tasks
manually would be onerous and prone to
human error. It might be possible to

requiring only standard Windows runtime
components and accepting arguments.
One of them allows an individual test in
the suite to be executed, thus:

So individual tests and the “run boundary
marker” program can be run from a batch
file. To define a group of tests as a single
test for coverage measurement purposes
they are run consecutively without running
that program between them

13PT - February 2012 - professionaltester.com

Development testing

Identical statement coverage (same path of control): Tests: 2, 2a,
2b, 2c, 2d, 2e, 3, 5a
Equivalent statement coverage (same statements executed in
different order): 2, 2f, 2g, 5, 5c
Unique statement coverage (cover statements no other test does): 3,
3c, 6b

Sub Main()
Dim CommandLineArgs As
System.Collections.ObjectModel.ReadOnlyCollection(Of String) =
My.Application.CommandLineArgs
Dim themodule, theinstrumentedmodule, thecoveragefile, thisline,
probeline As String, probenum As Integer
themodule = CommandLineArgs(0)
theinstrumentedmodule = "instumented-" & themodule
thecoveragefile = "coverage.txt"
If System.IO.File.Exists(theinstrumentedmodule) Then
My.Computer.FileSystem.DeleteFile(theinstrumentedmodule)
End If
FileOpen(1, themodule, 1)
FileOpen(2, theinstrumentedmodule, 8)
thisline = ""
While Not Left(LTrim(thisline), 3) = "Sub"
thisline = LineInput(1)
PrintLine(2, thisline)
End While
probenum = 0
PrintLine(2, "FileOpen(3, """ & thecoveragefile & """, 8)")
While Not EOF(1) And Not Left(LTrim(thisline), 7) = "End Sub"
thisline = LineInput(1)
If thisline <> "" Then
probenum = probenum + 1
probeline = "PrintLine(3, """ & themodule & "--PROBE--" & probenum
& """)"
PrintLine(2, probeline)
End If
PrintLine(2, thisline)
End While
While Not EOF(1)
thisline = LineInput(1)
PrintLine(2, thisline)
End While
FileClose()

Figure 2: Output of the analysis program

Figure 1: Instrumentation program

project.exe /testcase|tc:<name

of test case>

