
The best-known test execution tools run 
on Windows and are for testing Windows 
applications, or Web 1.0 sites optimized 
for Internet Explorer. But what about:

other OSs such as Mac OSX and 
various Linux distributions which are 
gaining market share?
smartphones, netbooks and tablets?
automatic online updating of third-party 
software causing change?
cloud applications, and users who want 
to use them with their choice of browser, 
a choice that's growing fast?
Web 2.0 sites including Flash, Flex, 
Silverlight, Java, Rails, PHP, .NET, etc 
applications, often alongside one 
another on the same page? 
(see figure 1)
highly configurable and skinnable user 
interfaces?
closed systems which will not run 
alongside other applications or would 
then behave differently due to time 
dependencies? (see figure 2)

Test automation 
ready for innovation

Allen Fisher explains how 

image recognition can solve 

long-standing problems of test 

automation and enable its 

application to new and future 

platforms

The solution to these challenges is a truly 
black box approach, which most test 
execution tools cannot achieve. To work 
they have to (i) identify user interface 
objects, or (ii) record events in terms of 
screen coordinates. In case (i) the tool is 
highly implementation-specific: testing a 
version of the same product for a different 
platform requires either a different tool 
which cannot use the tests already 
created, or reversion to manual execution. 
In case (ii), tests become invalid when the 
UI changes, whether as a result of 
development of the system under test or 
external factors: they fail to complete 
and/or return false incidents. Finally, 
traditional test tools run on the same 
computer as the SUT, requiring the OS to 
switch control continually between the two, 
so are often unstable and/or intrusive.

Achieving black-box automation: run 
the tool on another computer.
The test automation tool eggPlant runs on 
Mac OSX and Linux. But it can test 
applications on a vast range of other 
platforms. That's because it connects to 
and controls them using VNC (Virtual 
Network Computing). VNC is a remote 
control protocol similar to Apple/Windows 

Pure black box testing is by definition immune to 
technology change. But can black box test 
execution be automated?

By Allen Fisher

Testing new technologies

PT - March 2010 - professionaltester.com 4

Figure 1: iGoogle page using multiple technologies



Figure 2: air traffic control: a closed, real-time system

Figure 3: capturing a UI object as an image

Figure 4: SenseTalk

Remote Desktop, used for example by IT 
departments to manage server 
configuration or support users by 
temporarily “taking over” their workstation. 
eggPlant takes the role of a human 
operator, so can “see” the display, control 
the pointing device, and send keystrokes 
on the SUT device. VNC servers are 
available for virtually all important 
platforms including Symbian, Windows 
Mobile, Android and iPhone. An iPad 
version is sure to emerge soon.

Achieving test robustness: image 
recognition
So, eggPlant works by “seeing” the screen, 
and does not care what any of the items 
on it are called or what is their underlying 
technology. In that way, it's like a screen 
coordinate based tool. But it doesn't share 
their disadvantages because it records the 
UI objects as bitmap images of sectors of 
the screen rather than simply geometric 
points.

When scripting a test that includes, for 
example, a click on a button, the tester 
captures an image of that button (see 
figure 3). The image is given an arbitrary 
name which is used to refer to it in 
eggPlant's scripting language, SenseTalk 
(figure 4). It is necessary to capture it only 
once; subsequent interactions with the 
object are scripted by selecting it by name. 
As well as text, images can form part of 
the expected outcome for the test, ie the 
screen output: they are captured and 
named in the same way.

When the script is executed, eggPlant 
finds the image wherever it is on screen 
using image recognition algorithms and 
performs the scripted action. So the test 
runs even if the UI objects and outputs are 
in different locations on the screen, for any 
reason. If an image cannot be found, 
SenseTalk's ImageFound()function 
returns FALSE, so the script can raise an 
incident.

Other than if navigational structure of the 
SUT changes, the only time an eggPlant 
script needs maintenance is if the 
appearance of an object changes. It's 

achieved by executing the script with the 
Image Doctor feature. When eggPlant 
cannot find a required object, it pauses. 
The tester then selects the object as it 
now looks. Execution continues, pausing 

again if another object cannot be found so 
that the operation can be repeated. When 
the script finishes, the test has been 
repaired; it is now correct for the current 
build of the SUT.

Achieving test reuse: image collections
When an image is captured using Image 
Doctor, it does not by default replace any 
previous image of that object, but is added 
to a “collection” of valid images for that 
object. During subsequent execution of 
the script, eggPlant searches for all of 
them.

This means the script can be enabled to 
test any other version of the SUT, 
including those running on other 
platforms, by exactly the same procedure: 
eggPlant is connected to the new test item 
and the script is executed. Images of how 
the objects now look are added to their 
respective collections (images in 
embedded objects such as Flash and 
Java applets will often look similar enough 
to be found without user intervention). 

Abstracting the UI from the test procedure 
in this way means the same script can be 
used for multiple builds, versions 
(including language translations) and 
ports to new platforms (figure 5), 
multiplying the return on investment in 
automating the tests

Allen J Fisher is a Senior Systems 
Engineer with TestPlant, the producer of 
eggPlant.

Testing new technologies

PT - March 2010 - professionaltester.com 5

Figure 5: script reuse for multiple platforms and versions




